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Similarly

4mi —4mi

(z—e5 )(z—e5 ):ZZ—QZCOS%T-FL

This gives the desired factorization.

EXAMPLE 5.7.2 Solve 2% = i.

Solution. |i| =1 and Argi = § = a. So by equation 5.4, the solutions are
o = i35 k=0, 1, 2.

First, k = 0 gives

V3

0 T tisin Z +
= = — in —=—+—.
Zp=e cos6 1S 5 5 5
Next, k = 1 gives
zlzesﬁzcos%—i-isin%:T\/_—k%.
Finally, k = 2 gives
omi 97T+.. .
Z1=€6 =Cos — +isin — = —i.
! 6 6

We finish this chapter with two more examples of De Moivre’s theorem.

EXAMPLE 5.7.3 If

C = 14cosf+---+cos (n—1)0,
S = sinf+---+sin (n—1)6,

prove that
i nb i nl
sin &% _ sin &5 | _
C=—=2cos (n 21)9 and § = —=sin (n 21)6,
Sin 5 S1n 5

if 0 # 2k, k € Z.
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Solution.

C+iS = 1+ (cosf+isinf)+---+ (cos (n—1)0+isin (n —1)0)
14l g g gitn=1)0

= 14z+---+2""" where z ="

1—2" .
= 3 , if z £ 1, ie. 0 # 2km,
—z
1= eind B e%(eﬂ;g — 6”59)
1_610 e%(e%ﬁ —e%)
: 6
_ ei(n—l)gsm%
Sin 5
sin ¢
= (cos (n—1)4 +isin (n —1)§)— 3 :
Sin )

The result follows by equating real and imaginary parts.

EXAMPLE 5.7.4 Express cos nf and sin nf in terms of cosf and sin @,
using the equation cos nf + sin nf = (cos @ + isinh)™.

Solution. The binomial theorem gives

(cosf +isinf)™ = cos™ 0 + () cos" ! O(isin ) + (5) cos™ 2 (isinf)? + - - -
+ (isinf)".

Equating real and imaginary parts gives
cos nf = cos™ @ — (%) cos" "2 0sin? @ + - - -

sin nf = (’f) cos" L fhsinfh — (g) cos" 3 0sin0 + - .

5.8 PROBLEMS

1. Express the following complex numbers in the form x + iy, z,y real:

i i)?
(i) (=3 +4)(14 — 20); (i) f - i (i) 7(1;“_21,) .

[Answers: (1) —40 + 204; (i) —12 + H4; (i) —% + £]

2. Solve the following equations:
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(i) iz+(2—-10i)z = 3z+2i
i) (A+i)z+2—-)w = =3i
(14+2i)z+B+id)w = 2+2
[Answers:(i) z = —4% — 4@—1; (i) z = —1 +5i, w = 1_59 % ]
. Express 1+ (1+4) + (14+4)2 +... + (1 +14)% in the form z + iy, z,y
real. [Answer: (1 + 2°0)i.]

. Solve the equations: (i) 22 = —8 — 6i; (i) 22 — (3+4)z+4+3i = 0.

[Answers: (i) z = £(1 — 37); (i) 2 =2—1, 1 + 2i/]

Find the modulus and principal argument of each of the following
complex numbers:

(i) 4+i; (i) —

\S][oV]

— % (iil) —1+2i;  (iv) 3(=1+iV3).

[Answers: (i) V17, tan™'1; (ii) @, —m + tan~1 35 (iii) V5, T —

tan~12)

Express the following complex numbers in modulus-argument form:
(i) 2= (1+d)(14+iv3)(V3 — ).

(14451 —iv3)®

() == (V3 + i)

[Answers:

(1) z = 4\/_(COS S + 7sin %) (11) y = 27/2(COS 1lm +isin %) ]

(i) If z =2(cos F+isin §) and w = 3(cos g +isin §), find the polar
form of
5

(a) zw; (b) F;(c) £5(d) &=

w)’ z) w?”

(ii) Express the following complex numbers in the form z + iy:
() (1402 0) (1)

[Answers: (i): (a) 6(cos 2% +isin 57); (b) Z(cos 75 + isin 5);

(c) 3(cos =& +isin —%); (d) %(cos Hx 4 jsin 1T);

(i): (a) —64; (b) —i.]
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8. Solve the equations:

(1) 22 =144V3; (i) 2* = 4; (iii) 2° = —8i; (iv) 2 =2 — 2i.

[Answers: (i) 2 = £9550 (i) i*(cos T+ isin 5),k = 0,1,2,3; (i)
2=2i, —v/3—i, V3—1i; (iv) 2 = i*28 (cos & —isin &), k=0,1,2,3]
9. Find the reduced row—echelon form of the complex matrix

241 —-1+2¢ 2
1+7 —-1+43 1
1+2¢ 244 143

[Answer:

S O =
O O =

0
1]
0

10. (i) Prove that the line equation lx + my = n is equivalent to
pz + pz = 2n,

where p =1 + im.

(ii) Use (ii) to deduce that reflection in the straight line
Pz+pz=mn
is described by the equation
pw + pz = n.

[Hint: The complex number [ + im is perpendicular to the given
line.]

(iii) Prove that the line |z —a| = |z —b| may be written as pz+pz = n,

where p = b — a and n = |b|? — |a|?. Deduce that if z lies on the
Apollonius circle % = ), then w, the reflection of z in the line
|z—al

|z — a| = |z — b], lies on the Apollonius circle =

>

11. Let a and b be distinct complex numbers and 0 < a < .

(i) Prove that each of the following sets in the complex plane rep-

resents a circular arc and sketch the circular arcs on the same
diagram:
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Z J—
Arg =, —q, T —Q, @ — T.
z—b
z—a
Also show that Arg ;=7 represents the line segment joining
z

a and b, while Arg Z = 0 represents the remaining portion of

Z —
the line through a and b.
(ii) Use (i) to prove that four distinct points z1, 29, 23, 24 are con-

cyclic or collinear, if and only if the cross—ratio

24 — 21,23 — 21

24— 29" 23 — 29

is real.

(iii) Use (ii) to derive Ptolemy’s Theorem: Four distinct points A, B, C, D
are concyclic or collinear, if and only if one of the following holds:

AB-CD+ BC-AD = AC-BD

BD-AC+ AD-BC = AB-CD
BD-AC+ AB-CD = AD-BC.



Chapter 6

EIGENVALUES AND
EIGENVECTORS

6.1 Motivation

We motivate the chapter on eigenvalues by discussing the equation
2 2 _
az” + 2hxy + by” = ¢,

where not all of a, h, b are zero. The expression az? + 2hzy + by? is called
a quadratic form in x and y and we have the identity

2 2 a h T
ax® + 2hay + by’ = [ y][h b}{y]:XtAX,

a h

T
WhereX—[y}andA—[h b

] . A is called the matrix of the quadratic

form.

We now rotate the x, y axes anticlockwise through 6 radians to new
x1, y1 axes. The equations describing the rotation of axes are derived as
follows:

Let P have coordinates (x, y) relative to the z, y axes and coordinates
(1, y1) relative to the z;, y1 axes. Then referring to Figure 6.1:

115
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Y P

al x1

Figure 6.1: Rotating the axes.

x = O0Q =OPcos (0+ «)
= OP(cosfcosa — sinfsin o)
= (OPcosa)cosf — (OPsina)sin 6
= ORcosf — PRsinf

= x1cosf —ypsind.

Similarly y = x1sin 6 + y1 cos 6.
We can combine these transformation equations into the single matrix

equation:
x | | cosf —sind T
y | | sinf@  cosf |

or X = PY. where X = | © | v = | ® | ana p = | €00 —sinf ¢
Y Y1 sin 0 cos 6

We note that the columns of P give the directions of the positive x; and y;
axes. Also P is an orthogonal matrix — we have PP! = I, and so P~! = P,
The matrix P has the special property that det P = 1.

cosf) —sinf
sinf  cosf
We shall show soon that any 2 x 2 real orthogonal matrix with determinant

A matrix of the type P = } is called a rotation matrix.
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equal to 1 is a rotation matrix.
We can also solve for the new coordinates in terms of the old ones:

1| _y _pty — c9s0 sin ¢ x 7
Y1 —sinf cosf Y

so x1 = xcosf + ysinfh and y; = —xsinf + ycosf. Then
X'AX = (PY)'A(PY) =YY (P'AP)Y.

Now suppose, as we later show, that it is possible to choose an angle 6 so
that PLAP is a diagonal matrix, say diag(\1, A2). Then

and relative to the new axes, the equation ax? + 2hxy + by? = ¢ becomes
A2 + Xoy? = ¢, which is quite easy to sketch. This curve is symmetrical
about the x1 and y; axes, with P, and P», the respective columns of P,
giving the directions of the axes of symmetry.

Also it can be verified that P; and P, satisfy the equations

AP1 == )\1P1 and APQ = )\2P2.

u1

These equations force a restriction on A1 and Ao. For if P, = [ ], the

U1
first equation becomes

P e e R P b

Hence we are dealing with a homogeneous system of two linear equations in
two unknowns, having a non—trivial solution (u1, v1). Hence
a — )\1 h

h b— X\
Similarly, Ao satisfies the same equation. In expanded form, A; and As
satisfy

=0.

M —(a+bX+ab—h*=0.
This equation has real roots
\ a+b=++/(a+b)?2—4(ab— h?) _atbE/(a—b)+4n° (6.2)
2 2
(The roots are distinct if a # b or h # 0. The case a = b and h = 0 needs
no investigation, as it gives an equation of a circle.)

The equation A2 — (a+b)A+ab—h? = 0 is called the eigenvalue equation
of the matrix A.
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6.2 Definitions and examples

DEFINITION 6.2.1 (Eigenvalue, eigenvector)
Let A be a complex square matrix. Then if A is a complex number and
X a non—zero complex column vector satisfying AX = AX, we call X an
eigenvector of A, while A is called an eigenvalue of A. We also say that X
is an eigenvector corresponding to the eigenvalue .

So in the above example P; and P, are eigenvectors corresponding to A;
and Ao, respectively. We shall give an algorithm which starts from the
a

nob ] and constructs a rotation matrix P such that

eigenvalues of A = [

P'AP is diagonal.

As noted above, if X\ is an eigenvalue of an n x n matrix A, with
corresponding eigenvector X, then (A — A[,)X = 0, with X # 0, so
det (A — AI,) = 0 and there are at most n distinct eigenvalues of A.

Conversely if det (A — AI,,) =0, then (A — AI,,) X = 0 has a non—trivial
solution X and so A is an eigenvalue of A with X a corresponding eigenvector.

DEFINITION 6.2.2 (Characteristic equation, polynomial)
The equation det (A — AI,,) = 0 is called the characteristic equation of A,
while the polynomial det (A — \I},) is called the characteristic polynomial of
A. The characteristic polynomial of A is often denoted by ch 4 ().

Hence the eigenvalues of A are the roots of the characteristic polynomial
of A.

a

For a 2 x 2 matrix A = [ . b } , it is easily verified that the character-

d
istic polynomial is A? — (trace A)\ +det A, where trace A = a+d is the sum
of the diagonal elements of A.

2 1

EXAMPLE 6.2.1 Find the eigenvalues of A = [ 1 o

] and find all eigen-

vectors.

Solution. The characteristic equation of A is A2 — 4\ +3 =0, or
A=1)(A=3)=0.

Hence A =1 or 3. The eigenvector equation (A — AI,,) X = 0 reduces to

NI
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or
2-Nz+y =
r+(@2-Ny =
Taking A = 1 gives
rt+y =
z4+y = 0,
which has solution * = —y, y arbitrary. Consequently the eigenvectors

corresponding to A = 1 are the vectors [ _z } , with y £ 0.
Taking A = 3 gives

r—Yy = 07
which has solution x = y, y arbitrary. Consequently the eigenvectors corre-
sponding to A = 3 are the vectors [ ‘z } , with y #£ 0.
Our next result has wide applicability:

THEOREM 6.2.1 Let A be a 2 X 2 matrix having distinct eigenvalues \;
and Ay and corresponding eigenvectors X; and Xo. Let P be the matrix
whose columns are X; and Xp, respectively. Then P is non-singular and

A1 O
-1 - 1
P AP_[O AQ].

Proof. Suppose AX; = A1 X7 and AXs = Ao X5. We show that the system
of homogeneous equations

X1 +yXe=0

has only the trivial solution. Then by theorem 2.5.10 the matrix P =
[X1]|X?2] is non—singular. So assume

Then A(zX; +yX2) = A0 =0, so z(AX1) + y(AX2) = 0. Hence

xA X1 + yAaXs = 0. (6.4)
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Multiplying equation 6.3 by A; and subtracting from equation 6.4 gives
(/\2 — )\1>ng =0.

Hence y = 0, as (A2— A1) # 0 and X5 # 0. Then from equation 6.3, zX; =0
and hence z = 0.
Then the equations AX7 = A\ X1 and AXs = A X5 give

AP = A[X1|X,o] = [AX1|AX,] = [MX1|AXo]
_ A0 A0
= [X] &) [ 0 o ]‘P [ 0 )Xo }’
SO
s [ M0
P AP{O L

EXAMPLE 6.2.2 Let A = [ ? ; ] be the matrix of example 6.2.1. Then

-1 1
X, = [ ] and Xy = [ ] are eigenvectors corresponding to eigenvalues

1 1
. . -1 1
1 and 3, respectively. Hence if P = 11 | have
1 10
P AP = [ 0 3|

There are two immediate applications of theorem 6.2.1. The first is to the
calculation of A™: If P~'AP =diag (\1, A2), then A = Pdiag (A1, o) P!
and

- M0 oo\ ST A 0 o ST A 0]
N AL I S I A

The second application is to solving a system of linear differential equations

dx

i ax + by
d
d—? = cr+ dy,
where A = [ CCL d ] is a matrix of real or complex numbers and z and y

are functions of ¢. The system can be written in matrix form as X = AX,

o[ []- (4]

where
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We make the substitution X = PY, where Y = { il ] Then z; and ¥
1

are also functions of ¢ and

X =PY =AX = A(PY), soY = (P"'AP)Y = [ Aol f ]Y
2

Hence 1 = A\iz1 and 41 = Aoy1.
These differential equations are well-known to have the solutions z1 =
21(0)eM? and x5 = 29(0)e?2!, where 1(0) is the value of 21 when ¢ = 0.

[If ‘fl—f = kx, where k is a constant, then

d( ke \ _ —kt g dr —kt Kty _
dt(e x)— ke™"x +e i ke "z +e "kx = 0.
Hence e *z is constant, so e ¥z = ¢7*02(0) = 2(0). Hence z = x(0)e** )]
However [ zlégg } =p! [ igg; ], so this determines x1(0) and y;(0) in
1

terms of z(0) and y(0). Hence ultimately x and y are determined as explicit
functions of ¢, using the equation X = PY.

EXAMPLE 6.2.3 Let A = [ Z :2 } Use the eigenvalue method to
derive an explicit formula for A™ and also solve the system of differential
equations

dx

=T 9y —

o r — 3y
dy

= = 4x-5
dt "r y?

given x =7 and y = 13 when ¢t = 0.

Solution. The characteristic polynomial of A is A24+3A+2 which has distinct

roots Ay = —1 and Ay = —2. We find corresponding eigenvectors X; = [ 1 ]

13

aHdX2:|:3 1 4

4]. HenceifP:[

}, we have P~1AP = diag (-1, —2).

Hence

A" = (Pdiag(-1, —2)P™")" = Pdiag ((—1)", (-2)")P*

- LS Gl T



122 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

21 371 0 4 -3
= =D 1 4“0 Q"H—l 1]
A1 3x2n 4 -3
= U7 4><2”H—1 1]
" 4—-3x2" —3+3x2"
- | 4—4x2" —344x2"

To solve the differential equation system, make the substitution X =
PY. Then x = x1 + 3y1, y = 1 + 4y1. The system then becomes

T = -1
?)1 == _2y17

—t

so 21 = 21(0)e", y1 = y1(0)e *". Now

z1(0) | p-1 z(0) | 4 -3 T | -1

n(0) | y(O) | [ -1 1]l 13] 6]’
so 71 = —1le7t and y; = 6e=2. Hence v = —11le~! + 3(6e7%") = —11le~! +
18e72t y = —1le™t +4(6e7 %) = —11le™t + 242t

For a more complicated example we solve a system of inhomogeneous
recurrence relations.

EXAMPLE 6.2.4 Solve the system of recurrence relations

Tnt1 = an —Yn — 1
Yn+l = —Tp+ 2yn + 27

given that xo = 0 and yy = —1.
Solution. The system can be written in matrix form as

Xn+1 = AXn + B,

a2 i [1]

It is then an easy induction to prove that

where

X, =A"Xog+ (A" ...+ A+ IL)B. (6.5)
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Also it is easy to verify by the eigenvalue method that

CREI AP B RS
whereU:[i 1]andV:[_1 _i].Hence
A g f A4, = ZU+(3n_l+”2'+3+l)V
- 2y 8y

Then equation 6.5 gives

e 50 3] e ) ]

which simplifies to

(o] <[ Grrom],

Hence x, = (2n — 1+ 3")/4 and y, = (2n — 5+ 3")/4.

REMARK 6.2.1 If (A — I)~! existed (that is, if det (A — I3) # 0, or
equivalently, if 1 is not an eigenvalue of A), then we could have used the
formula

An_l—{—---—i-A—{—IQ = (An—IQ)(A—IQ)_l. (66)

However the eigenvalues of A are 1 and 3 in the above problem, so formula 6.6
cannot be used there.

Our discussion of eigenvalues and eigenvectors has been limited to 2 x 2
matrices. The discussion is a more complicated for matrices of size greater
than two and is best left to a second course in linear algebra. Nevertheless
the following result is a useful generalization of theorem 6.2.1. The reader
is referred to [28, page 350] for a proof.

THEOREM 6.2.2 Let A be an n x n matrix having distinct eigenvalues

A, ..., A\ and corresponding eigenvectors X1,...,X,. Let P be the matrix
whose columns are respectively Xi,...,X,,. Then P is non-singular and
M O - 0
) Xy - 0
P AP = . . .

0 0 - A



